Asymptotic properties of bridge estimators in sparse high-dimensional regression models

نویسندگان

  • Jian Huang
  • Joel L. Horowitz
  • Shuangge Ma
چکیده

We study the asymptotic properties of bridge estimators in sparse, highdimensional, linear regression models when the number of covariates may increase to infinity with the sample size. We are particularly interested in the use of bridge estimators to distinguish between covariates whose coefficients are zero and covariates whose coefficients are nonzero. We show that under appropriate conditions, bridge estimators correctly select covariates with nonzero coefficients with probability converging to one and that the estimators of nonzero coefficients have the same asymptotic distribution that they would have if the zero coefficients were known in advance. Thus, bridge estimators have an oracle property in the sense of Fan and Li (2001) and Fan and Peng (2004). In general, the oracle property holds only if the number of covariates is smaller than the sample size. However, under a partial orthogonality condition in which the covariates of the zero coefficients are uncorrelated or weakly correlated with the covariates of nonzero coefficients, we show that marginal bridge estimators can correctly distinguish between covariates with nonzero and zero coefficients with probability converging to one even when the number of covariates is greater than the sample size.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Properties of Bridge Estimators in Sparse High-dimensional Regression Models By

We study the asymptotic properties of bridge estimators in sparse, highdimensional, linear regression models when the number of covariates may increase to infinity with the sample size. We are particularly interested in the use of bridge estimators to distinguish between covariates whose coefficients are zero and covariates whose coefficients are nonzero. We show that under appropriate conditio...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Asymptotic oracle properties of SCAD-penalized least squares estimators

We study the asymptotic properties of the SCAD-penalized least squares estimator in sparse, high-dimensional, linear regression models when the number of covariates may increase with the sample size. We are particularly interested in the use of this estimator for simultaneous variable selection and estimation. We show that under appropriate conditions, the SCAD-penalized least squares estimator...

متن کامل

Adaptive Lasso for Sparse High-dimensional Regression Models

We study the asymptotic properties of the adaptive Lasso estimators in sparse, high-dimensional, linear regression models when the number of covariates may increase with the sample size. We consider variable selection using the adaptive Lasso, where the L1 norms in the penalty are re-weighted by data-dependent weights. We show that, if a reasonable initial estimator is available, under appropri...

متن کامل

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006